Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3490, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664429

ABSTRACT

Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.


Subject(s)
Caenorhabditis elegans , DNA Damage , DNA Repair , DNA-Binding Proteins , Endonucleases , Transcription Factor TFIIH , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Humans , Animals , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endonucleases/metabolism , Endonucleases/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Xeroderma Pigmentosum Group A Protein/metabolism , Xeroderma Pigmentosum Group A Protein/genetics , Protein Binding , Transcription Factors/metabolism , Transcription Factors/genetics , Mutation , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
2.
NAR Cancer ; 5(4): zcad057, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058548

ABSTRACT

The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.

3.
Cell Mol Life Sci ; 79(3): 166, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230528

ABSTRACT

The XPG/ERCC5 endonuclease was originally identified as the causative gene for Xeroderma Pigmentosum complementation group G. Ever since its discovery, in depth biochemical, structural and cell biological studies have provided detailed mechanistic insight into its function in excising DNA damage in nucleotide excision repair, together with the ERCC1-XPF endonuclease. In recent years, it has become evident that XPG has additional important roles in genome maintenance that are independent of its function in NER, as XPG has been implicated in protecting replication forks by promoting homologous recombination as well as in resolving R-loops. Here, we provide an overview of the multitasking of XPG in genome maintenance, by describing in detail how its activity in NER is regulated and the evidence that points to important functions outside of NER. Furthermore, we present the various disease phenotypes associated with inherited XPG deficiency and discuss current ideas on how XPG deficiency leads to these different types of disease.


Subject(s)
DNA-Binding Proteins/genetics , Endonucleases/genetics , Genome/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Animals , DNA Repair/genetics , DNA Replication/genetics , Humans , Xeroderma Pigmentosum/genetics
4.
Sci Rep ; 10(1): 17012, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046789

ABSTRACT

Statins are prescribed to treat hypercholesterolemia and to reduce the risk of cardiovascular disease. However, statin users frequently report myalgia, which can discourage physical activity or cause patients to discontinue statin use, negating the potential benefit of the treatment. Although a proposed mechanism responsible for Statin-Associated Myopathy (SAM) suggests a correlation with impairment of mitochondrial function, the relationship is still poorly understood. Here, we provide evidence that long-term treatment of hypercholesterolemic patients with Simvastatin at a therapeutic dose significantly display increased mitochondrial respiration in peripheral blood mononuclear cells (PBMCs), and platelets compared to untreated controls. Furthermore, the amount of superoxide is higher in mitochondria in PBMCs, and platelets from Simvastatin-treated patients than in untreated controls, and the abundance of mitochondrial superoxide, but not mitochondrial respiration trends with patient-reported myalgia. Ubiquinone (also known as coenzyme Q10) has been suggested as a potential treatment for SAM; however, an 8-week course of oral ubiquinone had no impact on mitochondrial functions or the abundance of superoxide in mitochondria from PBMCs, and platelets. These results demonstrate that long-term treatment with Simvastatin increases respiration and the production of superoxide in mitochondria of PBMCs and platelets.


Subject(s)
Blood Platelets/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hypercholesterolemia/drug therapy , Leukocytes, Mononuclear/drug effects , Mitochondria/drug effects , Simvastatin/pharmacology , Blood Platelets/metabolism , Cell Line , Electron Transport Complex I/metabolism , Electron Transport Complex IV/metabolism , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/metabolism , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Mitochondria/metabolism , Oxygen Consumption/drug effects , Simvastatin/therapeutic use , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...